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Abstract-The mechanics of a circular, spot weld between two identical elastic plates is studied. Amethod of
solution similar to that used by the authors in a paper concerned with the inftuence of an elastic layer on the
tangential compliance of bodies in contact is used. In the present analysis the relation between tangential load
and detlection is lostdue to the nature of the problem: bence, physical quantities are determined in terms of the
total tangential load applied in the weld region.

I. INTRODUCTION

In this communication the mechanics of a spot weld between two identical elastic plates is studied.
The weld is assumed to be circular and the bonding adhesive so thin that its effect is only to provide
displacement continuity in the bonded region. Exterior to the bonded region and in the plane of the
weld the plate surfaces are assumed to be stress-free. The outer plate surfaces (upper for top plate
and lower for bottom plate) are also assumed to be stress-free.

Analogous problems have been solved for two dimensions. For example, the problem of a lap
joint has been considered by Chang and Muki[l] and the cases of two and three layers bonded
together have been considered by Keer[2] and Keer and Chantaramungkorn[3]. Descriptions of
solutions for adhesive joints by means of engineering theory have been given in a survey article by
Sneddon[4]. However, most of the previous literature in the area of adhesive mechanics deals with
plane elastic problems. The present analysis will study the effect of the bonding of two identical
plates by means of a circular weld and will therefore by three-dimensional in nature.

The case of tangential shear loading in the weld region will be studied and the method of
analysis will be seen to be similar to that used by Goodman and Keer[5] in a paper dealing with the
influence of an elastic layer on the tangential compliance of bodies in contact. One significant
difference seen to occur in the present analysis is the inability to obtain a relation between load and
deflection. A slightly different technique from that used in [5] is therefore used for the present
analysis. This technique avoids the difficulty mentioned and allows the results to be given in terms
of the applied tangential load directly. Such a problem was encountered in a paper by Keer[6] and
the remarks made there will also be applicable here.

2. BOUNDARY CONDITIONS AND BASIC EQUATIONS

The present analysis deals with the stress distributions in a circular weld between two plates of
identical materials and thicknesses when the plates are moved relative to each other in a tangential
direction. The weld is of radiusa and theplates are of thickness h. The two coordinate systems that
will be used are cylindrical (r, 8, z) and rectangular (x, y, z) where the origin of the coordinate
systems will be taken at the center of the weld with the z-axis perpendicular to the weld (see Fig. 1).
Equal and opposite tractions in plane loading are applied to the upper and lower plates in the
direction of the x-axis. From the symmetry of the loading conditions the normal stresses can be
taken as zero in the plane of the weld. The boundary conditions for this problem are expressed in
the following manner:

1'.. = Uy= 0, U" =a z=o, O:5r:5a (1)

Tzz = 1'"" = T.y= 0 z=O, a<r<oo (2)

T..=1'u = T. y = 0 z=h, O:5r<oo (3)
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Fig. I. Geometry and coordinate system.

where it is convenient to give the stresses and displacements in terms of a cylindrical coordinate
system as

Tzy Tzr sin () '+ Tze cos ()

Ux == Ur cos 0 - Ue sin 0

Uy == Uy sin 0 + Ue cos 0

(4a)

(4b)

(5a)

(5b)

The stresses and displacements in cylindrical coordinates are further written in terms of their
Fourier components as

00
Tzr == ~ T~r cos nO (00)

n=O

~

Tze == ~ T:e sin nO (6b)
n=1

00

Tn == ~ T:z COS nO (6c)
n=O

00

U, == ~ Urn COS uO (7a)
n=O

00

Ue == ~ ue
n sin n(J (7b)

n~l

Uz == ~ u z
n cos n(J (7c)

n=O

A displacement solution to the field equations of the classical theory of elasticity can be easily
established in terms of integral transforms that satisfies the stress-free condition on z == h, eqn (3),
as well as the condition that the normal stress is zero on z == O. Such a solution is given in terms of
the Fourier coefficients of the displacements in polar coordinates as

I (00
2J.L(u,n + un == 2Jo {(Sn - T n)p-'[(132

- 2(1- v) sh2 f3 - gzg) sh (gZ)

- ({Z sh2 f3 +2(1- v)g) ch ({z)] - 2(Sn + Tn) (8a)

X [ctnh f3 ch (gz) - sh ({z)]}Jn+.({r) dg
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1 (~

2f.L(U,N - u;·) =210 {(S.. - TN)p-I[€zg +2(1- v)sh2 13 - f3~sh(,z)+(,z sh2 f3 -2(l- v)g)cb(,z)]

- 2(SN +TN) . [ctnh 13 cb(,z) - sb UZ)]}JN-I(,r) d, (8b)

1 f~
2f.Luz

N= '2 Jo (S.. - T.. )p -I [,zg -«1- 2v)sh2 13 - 132
) ch (Ez)

+(eZ shZ 13 - (1- 2v)g sh (EZ)JJN(fr) d,

where

g =13 - sh 13 ch 13

and

The stresses are easily computed from Hooke's law and are given by

1 f~.,=,+ "=8= '2 Jo {(S.. - T.. )p-I[(P - ,zg)ch(Ez)-(ez sh2f3 +g) sh (Ez)]

- (SN + TN)[ctnh 13 sh <ez) - ch (Ez)},JN+Mr) de

1 (''' ..,=,- "=8 = '2 Jo {(SN - TN)p -I[(Ezg - p)ch (Ez) +(ez sh2f3 +g) sh (Ez)]

-(S.. +TN)[ctnhf3 shUz)-ch (Ez)]},JN-1(€r) d€

(8e)

(9a)

(9b)

(9c)

(lOa)

(lOb)

(l0e)

where in tbe above equations sh (x), cb (x) are hyperbolic sine and cosine.
The relevant surface stresses and displacements on z =0aregiven in the following form:

(11a)

(lIb)

(lIe)

where

M= 2(1- v)(glp-1)

N =2(ctnh 13 -1).

(13a)

(13b)
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Here, it is noted that
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(14a)

(l4b)

Equations (11) and (12), when used with the boundary conditions, (1) and (2), lead to a coupled pair
of dual integral equations which may be solved by a modification of a technique used by
Westmann [7]. Thus set

Equations (15) lead, after an integration by parts and the use of certain identities (see e.g. [5]), to the
following expressions for the surface stresses within the weld region,

O:5r:5a (16a)

T~r- T~6 = ~(~) {(a 2 _Ir 2)1/2 [ I/>,(a) + 2~ II 1/>3(a)]

r[I/> ;(t) +2~ II t-
1
(tI/>3(t))'] «2 !:2)1/2' 0:5 r:5 a (16b)

Exterior to this region, the stresses are automatically zero. An elementary integration of the
surface stresses establishes that the applied load given in terms of the auxiliary functions becomes

Px = -Y(27T)rI/>.(t) dt. (17)

If one uses eqns (15) together with the boundary conditions for the displacements, eqns (1), one is
immediately led by use of Westmann's solution to a coupled pair of integral equations for the
auxiliary functions, 1/>1 and 1/>3, However, the kernels of these integral equations have integrands
which diverage at the lower limit in a manner similar to that in Ref. [6]. It is therefore necessary to
integrate by parts the integral transforms 8 1 and T, as follows:

TM) = ~(~) C· [1/>1(a) sin (ga)-rI/1,(t) sin(gt) dt]

- 2~ II ~(~) C' [1/>3(a) sin (ga)-rI/13(t) sin (gt)dt] (I8b)

where

(19a)

(19b)

Using the forms of the integral transforms as defined by eqns (18) with the notation of eqns (19)
together with the displacement boundary conditions (1) and the displacements (12), one applies the
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method of Westmann[7] with some minor modifications to obtain the following coupled pair of
Fredholm integral equations of the second kind:

11'(2- V)I/II(S)- <PI(a) L" (M +N) sin (~s) sin(~a) d~

+ La I/I1(t) L'" (M +N)sin(~s)sinUt)d~ dt

- 2~ V {tfl3(a) L'" [M -(1- v)N] sin Ua)sin (~s) d~

- La 1/13(t) Loo [M - (l-v)N] sin (Et) sin (Es) dE dt} "" OJ Os S Sa (20a)

7fJlfb'I(S) +4>1(a) L"" (M - N) sin Ua) sin (~s) d~ - L4 "'I(t) I'" (M - N) sin Ut) sinUs) de dt

41Ti~:v) t/t3(S) +2~ v {«fi3(a) L'" [M +(l-v)N] sin (Eil) sin (~s)d~

(20b)Oss sa.

Equation (20b/) is not written in its mostdesirable form since the two unknown functions appear as
a linear combination. The function "'1(5) can be easily eliminated from (20b') by use of (20a) to
obtain

- 41t(I - 11)"'3(5)+ «fit(a ) L"" [(3 - v)M - (1- v)N] sin Ua) sin (~s) d~

-L4 t/tt(t) Le»[(3-v)M-(1-v)N]sin(~t)SinUS)dedt

+2~v tP3(a) Le» [(3-v)M+(l-vr~N]sin(€a)sinUs)d~

2 1" Ie»--2- "'3(t) [(3-lJ)M+(l-lJ)2N]sinUt)sin(~s)d€dt=OJ
-p () ()

It is noted that eqns (20) no longer depend upon the displacement prescribed by eqn (1). Instead
the results depend explicitly upon the quantities 4>1(a) and «fi.J..a)J which can be considered as
known constants. They are determined by the following conditions:

where

(22a)

(22b)

Since "'I(t) and "'l(t) are proportional to tP,(a) and tP3(a)J eqns (21) provide the means for the
determination of all results in terms of the applied load P". The significant quantity of interest for
this problem is the stress intensity factor. Using the definition as given in the text by Sneddon and
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Lowengrub[8], the stress intensity factors will be defined as follows:

(23a)

(23b)

(24a)

(24b)

The functions "'I> "'3 are computed from eqns (20a,b) in terms of the constants <PI(a) and <P3(a) by
means of the iterative technique developed in [5]; then the constants <pt(a) and <P3(a) are
determined by means of eqns (21a, b) and (22a, b) and, finally, the stress intensity factors K t and K2

follow from (23b) and (24b). The values of the stress intensity factors are given in Table 1below.
The values for K 1 and K2 represent, respectively, the symmetric and asymmetric portions of the
stress intensity factors in the x and y directions.

It is useful to also present the results in terms of the conventional mode II and mode III stress
intensity factors. These are given as

KII ::;: lim h/(21T(a - r»)T~r}, Klll ::;: lim {-y(2'lT(a - r»T~9}

which in terms of K 1 and K2 above may be written as

K K* P -1/2 -3/2 LJ 1(K K)' LJlll::;: III x1T a COSu::;:"2 1- 2 SInu.

Numerical values of K1, and K1'l are given in Table 2.

(25a,25b)

(26a)

(26b)

3. DISCUSSION

The results presented in this paper are representative of the shear load of a spot weld with only
near field considerations taken into account. Some mention of the far field loadiBg conditions is
required. If the load Px were applied at z ::;: h12, then all loading would be in-plane. The far field load
for this case is identical to the plane stress solution for a concentrated load and would diminish as
O(lIR) as R ::;: (x 2 + y2)1/2~OO. The displacement is O(log R)and therefore becomes unbounded at

Table 1. Values ofthe stress concentrationfactors K I and K 2

a/h lJ = U lJ = u.~ lJ lJ.'

K
1

K
2

K
1 K

2
K

1
K

2

0 1. 0000 0.0000 1. 0000 0.0000 1. 0000 0.0000

0.2 1. 0033 0.0039 1.0036 0.0041 1. 0039 0.0043

0.4 1.0235 0.0262 1. 0255 0.0276 1. 0277 0.0288

0.6 1. 0715 0.0696 1. 0754 0.0736 1. 0802 0.0770

0.8 1. 1592 0.1232 1.1608 0.1322 1. 1654 0.1388

1.0 1. 3148 0.1749 1. 2995 0.1932 1. 2944 0.2041

1.2 1.6206 0.2072 1. 5421 0.2468 1.4992 0.2675

1.5 3.5287 2.6110 0.2832 2.2194 0.3502
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Table 2. Values ofthe stress intensity factors K1, and K111' (Kll =K111P.1r- Jl2a-312 cos 9, Kill =K111p.~-Jl2a-312 sin 9)

ath u D 0 U D 0.3 u a 0.5

* * * * * *Kn Knl Kn KIn Ku KnI

0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

0.2 0.5036 0.4997 0.5039 0.4998 0.5041 0.4998

0.4 0.5249 0.4987 0.5266 0.4990 0.5283 0.4995

0.6 0.5706 0.5010 0.5745 0.5009 0.5786 0.5016

0.8 0.6412 0.5180 0.6465 0.5143 0.6521 0.5133

1.0 0.7449 0.5200 0.7464 0.5532 0.7493 0.5452

1.2 0.9139 0.7067 0.8945 0.6477 0.8834 0.6159

1.5 1.4471 1.1639 1. 2848 0.9346

an infinitely large distance from the weld. This feature accounts for the lack of a relation between
load and deflection mentioned earlier.

Since the load is applied on the surface of the layer, Z = 0, the loading is also equipollent to a
concentrated moment applied at the center of the layer. At a large distance from the origin the
solution should be equivalent to the plate bending solution fora concentrated moment. The
deflection for such a loading is given as

Uz = w =O(R log R cos 8) as R -+00.

Thus, the slope will be infinite at an infinitely large distance from the origin, and there will be no
relationship between moment and rotation. Equation (8c) differentiated appropriately will have a
divergent infinite integral as g-+O, which indicates this behavior.

If one desired to produce a solution which gives a relation between load and deflection and
between slope and moment, one would have to impose conditions on a layer of finite extent, say
having a radius R. However, the present analysis should be adequate for demonstrating near field
stress distributions for a spot weld.
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APPENDIX
Although the calculation was not performed in this paper, the following method can be used to enhance convergence of the

infinite integrals in eqns (20). The integrals will be of the form

I(u) = rM(f3) cos (f3u) df3

J(u) =r N(f3) cos (f3u) df3.

The integral I(u) can be written as follows:

I(u) = r (M - M_) cos (f3u) dl3 +rM_ cos (f3u)df3

(AI)

(A2)

(A3)
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where

M~= -4 (~-~'-D e-'~ (A4)

and hence

r {-I 4-u' 4[4-3U']} (A5)o M~cos(~u)d~=8(l-II) 4+u'+[4+u']'- [4+U']3 .

Similarly,

J(u)= r(N-N~)COS(~U)d~+4/(4+U') (A6)

where

N~= 2e-'~. (A7)


